Automation of mind maps

Main Article Content

Olexyi H. Dubinsky
https://orcid.org/0000-0001-8536-1603

Abstract

The mind maps that students compile are subject to verification. To compare graphs, you need to develop an application that connects to the control system training on the server. To reduce the complexity of application development, you need to limit the choice of texts added by students to the knowledge map, the choice of terms from the thesaurus subject area. Automatic assessment of the quality of intelligence maps created by students when mastering the topics of the course can be performed in this way. The restrictions imposed to solve this problem are the prohibition of entering texts from the keyboard. Signatures to card nodes must be selected from a list prepared in advance — from terminological dictionary of the subject area. The need to limit text input requires abandoning the use of common programs and online services for building smart maps. In fact, it is necessary develop new software or modify one of the existing software packages available under an open source license. Perhaps, for the first iterations it is necessary to be limited only to text representation of a card in the outline mode as it is implemented in text2mindmap service.


 


 


 


 

Article Details

How to Cite
Dubinsky, O. (2020). Automation of mind maps. Educational Dimension, 54(2), 111-121. https://doi.org/10.31812/educdim.v54i2.3860
Section
Theory, history and methodology of learning

References

1. Liu, Y., Zhao, G., Ma, G., Bo, Y. (2014). The effect of mind mapping on teaching and learning: A meta-analysis. Standard Journal of Education and Essay, 2 (1), 17–31.
2. Dubinsky, A. (2019). Mind maps for education. In: Exploring the Mind’s Eye: An Interdisciplinary Conference on Imagination, October 25–26, 2019, Bilkent University, Bilkent, Ankara, Turkey. URL: http://repo.dma.dp.ua/4447/
3. Datcun N. N. (2015). Sovmestnoe otcenivanie deiatelnosti obuchaiushchikhsia v massovykh otkrytykh onlain kursakh: sistematicheskii obzor literatury. Mir nauki, (3), 10–10. URL: https://mir-nauki.com/PDF/53PDMN315.pdf
4. Siochos, Vasilis and Papatheodorou, Christos Developing a Formal Model for Mind Maps., 2011. In First Workshop on Digital Information Management, Corfu (Greece), 30–31 March 2011. [Conference paper] URL: http://eprints.rclis.org/15842/
5. Dubinskii A. Ispolzovanie diagramm sviazei (mindmaps) v lektcionnykh prezentatciiakh. // Suchasni tendentsii navchannia pryrodnycho-matematychnykh ta tekhnolohichnykh dystsyplin u zahalnoosvitnii ta vyshchii shkoli: [materialy III Mizhnarodnoi naukovo-praktychnoi onlain- internet konferentsii, m. Kropyvnytskyi, 17–22 zhovtnia 2016 roku] / Kropyvnytskyi: RVV KDPU im. V. Vynnychenka, 2016. — 176 s.
6. Sanfeliu, A., Fu, K. S. (1983). A distance measure between attributed relational graphs for pattern recognition. IEEE transactions on systems, man, and cybernetics, (3), 353–362. doi: 10.1109/TSMC.1983.6313167
7. Bunke, H. (2000, September). Recent developments in graph matching. In Proceedings 15th International Conference on Pattern Recognition. ICPR-2000 (Vol. 2, pp. 117–124). IEEE. doi: 10.1109/ICPR.2000.906030
8. Rachkovskii D. A. Bystryi poisk skhodnykh grafov po rasstoianiiu redaktirovaniia // Kibernetika i sistemnyi analiz — 2019, Tom 55 — № 6, s. 178–194.
9. Dubinskii A. G. Avtomatizatciia podgotovki uchebnogo terminologicheskogo slovaria // Mizhnarodna naukovo-praktichna konferentciia «Informatciini tekhnologiї v osviti ta nautci» Melitopol, MDPU, 13–14 chervnia 2019 r.
10. Dubinskii A. G. Nekotorye voprosy primeneniia vektornoi modeli predstavleniia dokumentov v informatcionnom poiske // Upravliaiushchie sistemy i mashiny. — 2001. — T. 2. — S. 77.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.