Комп'ютерне моделювання нейронних мереж з використанням електронних таблиць: світанок ери Камелоту

Основний зміст статті

Сергій Семеріков
Ілля Теплицький
Юлія Єчкало
Арнольд Ків

Анотація

Семеріков С.О., Теплицький І.О., Єчкало Ю.В., Ків А.Ю. Комп'ютерне моделювання нейронних мереж з використанням електронних таблиць: на зорі епохи Камелота.


У статті обґрунтовано необхідність розробки методів навчання комп'ютерного моделювання нейронних мереж у середовищі електронних таблиць. Проводиться систематичний огляд їх застосування для імітації штучних нейронних мереж. Автори виділяють основні підходи до вирішення проблеми навчання мережевого комп'ютерного моделювання в середовищі електронних таблиць, спільне застосування електронних таблиць та інструментів нейромережевого моделювання, застосування сторонніх надбудов до електронних таблиць, розробка макросів з використанням вбудованих мов електронних таблиць; використання стандартних надбудов електронних таблиць для нелінійної оптимізації, створення нейронних мереж у середовищі електронних таблиць без надбудов і макросів. Проаналізувавши збірку праць 1890–1950 рр., дослідження визначає роль наукового журналу «Вісник математичної біофізики», його засновника Ніколя Рашевського та наукового співтовариства навколо журналу у створенні та розробці моделей та методів обчислювальної нейронауки. Виявлено психофізичні основи створення нейронних мереж, математичні основи нейронних обчислень та методи нейроінженерії (зокрема, розпізнавання зображень). Обговорюється роль Уолтера Пітса у поєднанні описової та кількісної теорій навчання. Показано, що для набуття компетенцій нейронного моделювання в середовищі електронних таблиць слід опанувати моделі, засновані на історико-генетичному підході. Вказується, що існує три групи моделей, які є перспективними з точки зору розробки відповідних методів - безперервна двофакторна модель Рашевського, дискретна модель Маккаллоха і Піттса, і дискретні безперервні моделі Хаусоголдер та Ландал.

Деталі статті

Як цитувати
Семеріков, С., Теплицький, І., Єчкало, Ю., & Ків, А. (2018). Комп’ютерне моделювання нейронних мереж з використанням електронних таблиць: світанок ери Камелоту. Педагогіка вищої та середньої школи, 51, 159-191. https://doi.org/10.31812/pedag.v51i0.3667
Розділ
Статті

Посилання

1. Abelson, H., Sussman, G. J., Sussman, J.: Structure and Interpretation of Computer Programs. 2nd edn. MIT Press, Cambridge (1996).
2. Abraham, T. H.: (Physio)logical circuits: The intellectual origins of the McCulloch-Pitts neural networks. Journal of the History of the Behavioral Sciences. 38 (1), 3–25 (2002). doi: 10.1002/jhbs.1094
3. Ayed, A. S.: Parametric Cost Estimating of Highway Projects using Neural Networks. Master thesis, Memorial University (1997).
4. Buergermeister, J. J.: Using Computer Spreadsheets for Instruction in Cost Control Curriculum at the Undergraduate Level. In: Dalton, D. W. (ed.) Restructuring Training and Education through Technology, Proceedings of the 32nd Annual Conference of the Association for the Development of Computer-Based Instructional Systems, San Diego, California, October 29 — November 1, 1990, pp. 214–220. ADCIS International, Columbus (1990).
5. Cowan, J. D. Interview with J. A. Anderson and E. Rosenfeld. In: Anderson, J. A., Rosenfeld, E. (eds.) Talking nets: An oral history of neural networks, pp. 97–124. MIT Press, Cambridge (1998).
6. Cull P.: The mathematical biophysics of Nicolas Rashevsky. BioSystems. 88 (3), 178–184 (2007). doi: 10.1016/j.biosystems.2006.11.003
7. Eberhart, R. C., Dobbins, R. W.: CHAPTER 1 — Background and History. In: Eberhart, R. C., Dobbins, R. W. (eds.) Neural Network PC Tools: A Practical Guide, pp. 9–34. Academic Press, San Diego (1990).
8. Freedman, R. S., Frail, R. P., Schneider, F. T., Schnitta, B.: Expert Systems in Spreadsheets: Modeling the Wall Street User Domain. In: Proceedings First International Conference on Artificial Intelligence Applications on Wall Street, Institute of Electrical and Electronics Engineers, New York, 9–11 Oct. 1991.
9. Hegazy, T., Ayed, A.: Neural Network Model for Parametric Cost Estimation of Highway Projects. Journal of Construction Engineering and Management. 124 (3), 210–218 (1998). doi: 10.1061/(ASCE)0733-9364(1998)124:3(210)
10. Hewett, T. T.: Teaching Students to Model Neural Circuits and Neural Networks Using an Electronic Spreadsheet Simulator. Behavior Research Methods, Instruments, & Computers. 17 (2), 339–344 (1985). doi: 10.3758/BF03214406
11. Hewett, T. T.: Using an Electronic Spreadsheet Simulator to Teach Neural Modeling of Visual Phenomena (Report No. MWPS–F–85–1). Drexel University, Philadelphia (1985).
12. Householder, A. S., Landahl, H. D.: Mathematical Biophysics of the Central Nervous System. Principia Press, Bloomington (1945).
13. Householder, A. S.: A neural mechanism for discrimination: II. Discrimination of weights. Bulletin of Mathematical Biophysics. 2 (1), 1–13 (1940). doi: 10.1007/BF02478027
14. Householder, A. S.: A theory of steady-state activity in nerve-fiber networks III: The simple circuit in complete activity. Bulletin of Mathematical Biophysics. 3 (4), 137–140 (1941). doi: 10.1007/BF02477933
15. Householder, A. S.: A theory of steady-state activity in nerve-fiber networks IV. N circuits with a common synapse. Bulletin of Mathematical Biophysics. 4 (1), 7–14 (1942). doi: 10.1007/BF02477933
16. Householder, A. S.: A theory of steady-state activity in nerve-fiber networks I: Definitions and Preliminary Lemmas. Bulletin of Mathematical Biophysics. 3 (2), 63–69 (1941). doi: 10.1007/BF02478220
17. Householder, A. S.: A theory of steady-state activity in nerve-fiber networks II: The simple circuit. Bulletin of Mathematical Biophysics. 3 (3), 105–112 (1941). doi: 10.1007/BF02478168
18. Hryshchenko, N. V., Chernov, Ye. V., Semerikov, S. O.: Fizychni modeli v kursi “Osnovy kompiuternoho modeliuvannia” (Physical models in the course “Fundamentals of computer simulation”). In: Methodological and organizational aspects of the use of the INTERNET network in the institutions of science and education (INTERNET — EDUCATION — SCIENCE — 98), 1st international scientific and practical conference,
Vinnytsia, 1998, vol. 2, pp. 341–348. UNIVERSUM-Vinnytsia, Vinnytsia (1998).
19. James W.: Psychology. Henry Holt and Company, New York (1892).
20. James W.: The Principles of Psychology. Henry Holt and Company, New York (1890).
21. Johnston S. J.: Promised Land Comes Through With Braincel for Excel 3.0. InfoWorld. 13 (7), 14 (1991).
22. Kendrick, D. A., Mercado P. R., Amman H. M.: Computational Economics. Princeton University Press, Princeton (2006).
23. Landahl, H. D., McCulloch, W. S., Pitts W.: A statistical consequence of the logical calculus of nervous nets. Bulletin of Mathematical Biophysics. 5 (4), 135–137 (1943). doi: 10.1007/BF02478260
24. Landahl, H. D., Runge, R.: Outline of a matrix calculus for neural nets. Bulletin of Mathematical Biophysics. 8 (2), 75–81 (1946). doi: 10.1007/BF02478464
25. Landahl, H. D.: A matrix calculus for neural nets: II. Bulletin of Mathematical Biophysics. 9 (2), 99–108 (1947). doi: 10.1007/BF02478296
26. McCulloch, W. C., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics. 5 (4), 115–133 (1943). doi: 10.1007/BF02478259
27. Mintii, I. S., Tarasov, I. V., Semerikov S. O.: Meta navchannia ta zmist kursu “Vstup do prohramuvannia” dlia maibutnikh uchyteliv informatyky (The purpose of the teaching and the contents of the
course “Introduction in programming” for future computer science teacher). Visnyk Cherkaskoho universytetu. Seriia pedahohichni nauky. 279, 57–63 (2013).
28. Mintii, I. S., Tarasov, I. V., Semerikov S. O.: Metodyka formuvannia u maibutnikh uchyteliv informatyky kompetentnostei z prohramuvannia na prykladi temy “Ekspertna systema” (Methods of forming
of future informatics teachers competencies in programming by example the theme “Expert system”). Naukovyi chasopys NPU im. M. P. Drahomanova. Seriia No2. Kompiuterno-oriientovani systemy navchannia. 14 (21), 91–96 (2014).
29. Permiakova, O. S., Semerikov, S. O.: Zastosuvannia neironnykh merezh u zadachakh prohnozuvannia (The use of neural networks in forecasting problems). In: Materials of the International Scientific and Practical
Conference “Young scientist of the XXI century”, KTU, Kryviy Rih, 17–18 November 2008.
30. Pitts, W., McCulloch, W. S.: How we know universals the perception of auditory and visual forms. Bulletin of Mathematical Biophysics. 9 (3), 127–147 (1947). doi: 10.1007/BF02478291
31. Pitts, W.: A general theory of learning and conditioning: Part I. Psychometrika. 8 (1), 1–18 (1943). doi: 10.1007/BF02288680
32. Pitts, W.: A general theory of learning and conditioning: Part II. Psychometrika. 8 (2), 131–140 (1943). doi: 10.1007/BF02288697
33. Pitts, W.: Some observations on the simple neuron circuit. Bulletin of Mathematical Biophysics. 4 (3), 121–129 (1942). doi: 10.1007/BF02477942
34. Pitts, W.: The linear theory of neuron networks: The dynamic problem. Bulletin of Mathematical Biophysics. 5 (1), 23–31 (1943). doi: 10.1007/BF02478116
35. Pitts, W.: The linear theory of neuron networks: The static problem. Bulletin of Mathematical Biophysics. 4 (4), 169–175 (1942). doi: 10.1007/BF02478112
36. Rapoport, A., Shimbel, A.: Steady states in random nets: I. Bulletin of Mathematical Biophysics. 10 (4), 211–220 (1948). doi: 10.1007/BF02477503
37. Rapoport, A.: Contribution to the probabilistic theory of neural nets: I. Randomization of refractory periods and of stimulus intervals. Bulletin of Mathematical Biophysics. 12 (2), 109–121 (1950). doi: 10.1007/BF02478248
38. Rapoport, A.: Contribution to the probabilistic theory of neural nets: II. Facilitation and threshold phenomena. Bulletin of Mathematical Biophysics. 12 (3), 187–197 (1950). doi: 10.1007/BF02478318
39. Rapoport, A.: Contribution to the probabilistic theory of neural nets: III. Specific inhibition. Bulletin of Mathematical Biophysics. 12 (4), 317–325 (1950). doi: 10.1007/BF02477902
40. Rapoport, A.: Contribution to the probabilistic theory of neural nets: IV. Various models for inhibition. Bulletin of Mathematical Biophysics. 12 (4), 327–337 (1950). doi: 10.1007/BF02477903
41. Rapoport, A.: Steady states in random nets: II. Bulletin of Mathematical Biophysics. 10 (4), 221–226 (1948). doi: 10.1007/BF02477504
42. Rashevsky, N.: Mathematical biophysics of abstraction and logical thinking. Bulletin of Mathematical Biophysics. 7 (3), 133–148 (1945). doi: 10.1007/BF02478314
43. Rashevsky, N.: Outline of a physico-mathematical theory of excitation and inhibition. Protoplasma. 20 (1), 42–56 (1933). doi: 10.1007/BF02674811
44. Rashevsky, N.: Some remarks on the boolean algebra of nervous nets in mathematical biophysics. Bulletin of Mathematical Biophysics. 7 (4), 203–211 (1945). doi: 10.1007/BF02478425
45. Rashevsky, N.: The neural mechanism of logical thinking. Bulletin of Mathematical Biophysics. 8 (1), 29–40 (1946). doi: 10.1007/BF02478425
46. Rienzo, T. F., Athappilly, K. K.: Introducing Artificial Neural Networks through a Spreadsheet Model. Decision Sciences Journal of Innovative Education. 10 (4), 515–520 (2012). doi: 10.1111/j.1540-4609.2012.00363.x
47. Ruggiero M. A.: Cybernetic Trading Strategies: Developing a Profitable Trading System with State-of-the-Art Technologies. John Wiley & Sons, New York (1997).
48. Ruggiero, M.: Embedding neural networks into spreadsheet applications. US Patent 5,241,620, 31 Aug 1993.
49. Semerikov, S. O., Teplytskyi I. O.: Shtuchnyi intelekt v kursi informatyky pedahohichnoho VNZ (Artificial intelligence in teaching informatics at pedagogical university). In: Materials of the 4th All-Ukrainian Conference of Young Scientists on the Information Technologies in Education, Science and Technology ITONT–2004, Cherkasy, 28–30 April 2004.
50. Shimbel, A., Rapoport, A.: A statistical approach to the theory of the central nervous system. Bulletin of Mathematical Biophysics. 10 (2), 41–55 (1948). doi: 10.1007/BF02478329
51. Soloviov, V. M., Semerikov, S. O., Teplytskyi, I. O.: Instrumentalne zabezpechennia kursu kompiuternoho modeliuvannia (Instrumental computer simulation courseware). Kompiuter u shkoli ta simi. 4, 28–31 (2000).
52. Soloviov, V. M., Semerikov, S. O., Teplytskyi, I. O.: Osnovy kompiuternoho modeliuvannia v serednii shkoli ta pedahohichnomu vuzi (Fundamentals of computer simulation in secondary school and higher pedagogical institutions). In: Collection of scientific and practical materials of the All-Ukrainian conference on the Pre-professional training of pupils in the context of the implementation of the target comprehensive program “Teacher”, vol. 2, pp. 53–56. Dnipropetrovsk (1997).
53. Sussman, G. J., Wisdom, J.: Structure and interpretation of classical mechanics. 2nd edn. MIT Press, Cambridge (2015).
54. Teplytskyi, I., Semerikov, S.: Kompiuterne modeliuvannia mekhanichnykh rukhiv u seredovyshchi elektronnykh tablyts (Computer modeling of mechanical movements in an spreadsheets environment). Fizyka ta astronomiia v shkoli. 5, 41–46 (2002).
55. Teplytskyi, I. O., Semerikov, S. O.: Kompiuterna navchalna fizychna hra “Miaka posadka” (Computer training physical game “Soft landing”). Naukovi zapysky: zbirnyk naukovykh statei Natsionalnoho pedahohichnoho universytetu imeni M. P. Drahomanova. 53, 347–355 (2003).
56. Teplytskyi, I. O., Semerikov, S. O.: Kompiuterne modeliuvannia absoliutnykh ta vidnosnykh rukhiv planet Soniachnoi systemy (Computer simulation of absolute and relative motions of the planets the Solar system). Zbirnyk naukovykh prats Kamianets-Podilskoho natsionalnoho universytetu. Seriia pedahohichna. 13, 211–214 (2007).
57. Teplytskyi, I. O., Semerikov, S. O.: Modeliuvannia za dopomohoiu vypadkovykh chysel (Simulation using random numbers). Zbirnyk naukovykh prats Kamianets-Podilskoho natsionalnoho universytetu. Seriia pedahohichna. 17, 248–252 (2011).
58. Teplytskyi, I. O., Semerikov, S. O.: Na perekhresti ekolohii, matematyky, informatyky y fizyky (At the intersection of ecology, mathematics, computer science and physics). Zbirnyk naukovykh prats Kamianets-Podilskoho natsionalnoho universytetu. Seriia pedahohichna. 18, 34–37 (2012).
59. Teplytskyi, I. O.: Elementy kompiuternoho modeliuvannia (Elements of computer simulation). 2nd edn. KSPU, Kryvyi Rih (2010).
60. Teplytskyi, I. O.: Kompiuterne modeliuvannia v shkilnomu kursi informatyky (Computer simulation in the school informatics course). Nyva znan. Informatsiini tekhnolohii v osviti. 1, 63–74 (1994).
61. Teplytskyi, I. O.: Vykorystannia elektronnykh tablyts u kompiuternomu modeliuvanni (Using spreadsheets in computer simulation). Kompiuter u shkoli ta simi. 2, 27–32 (1999).
62. Wei, T.: On matrices of neural nets. Bulletin of Mathematical Biophysics. 10 (2), 63–67 (1948). doi: 10.1007/BF02477433
63. Weinberg, A. M.: Gale J. Young. Physics Today. 45 (1), 84 (1992). doi: 10.1063/1.2809507
64. Werbos, P. J.: Maximizing long-term gas industry profits in two minutes in Lotus using neural network methods. Transactions on Systems Man and Cybernetics. 19 (2), 315–333 (1989). doi: 10.1109/21.31036
65. Yechkalo, Yu .V., Teplytskyi, I. O.: Kompiuterne modeliuvannia doslidu Rezerforda v seredovyshchi elektronnykh tablyts (Computer simulation of Rutherford’s experiment in a spreadsheet environment). In: Collection of scientific papers on the Modern technologies in science and education, vol. 2, pp. 56–59. KSPU Publishing department, Kryvyi Rih (2003).
66. Yechkalo, Yu. V.: Kompiuterne modeliuvannia brounivskoho rukhu (Computer simulation of the Brownian motion). Pedahohichnyi poshuk. 5, 97–100 (2010).
67. Yechkalo, Yu. V.: Kompiuterne modeliuvannia rukhu zariadzhenoi chastynky v mahnitnomu poli v seredovyshchi elektronnykh tablyts (Computer simulation of motion of a charged particle in a magnetic field in the environment of spreadsheets). Problemy suchasnoho pidruchnyka. 5 (2), 66–72 (2004).
68. Yechkalo, Yu. V.: Kompiuterne modeliuvannia yak zasib realizatsii mizhpredmetnykh zviazkiv kursu fizyky (Computer modeling as a means of realizing interdisciplinary connections in the physics course). Theory and methods of learning mathematics, physics, informatics. 5 (2), 125–128 (2005).
69. Yechkalo, Yu. V.: Tekhnolohiia navchannia kompiuternoho modeliuvannia fizychnykh protsesiv i yavyshch u starshii shkoli (Tech of learning of computer simulation of physical processes and phenomena in school). In: Abstracts of the 6th All-Ukrainian scientific and methodical workshop on the Computer modeling in education, Kryvyi Rih, 12 April 2013.
70. Yechkalo, Yu. V.: Vybir seredovyshcha modeliuvannia fizychnykh protsesiv (Selection of environment for simulation of physical processes). Theory and methods of learning mathematics, physics, informatics. 7 (2), 11–14 (2008).
71. Yechkalo, Yu. V.: Vykorystannia Dokumentiv Google dlia orhanizatsii spilnoi roboty zi stvorennia kompiuternoi modeli (The use of Google Docs to collaborate on the creation of computer model). In: Abstracts of the 5th All-Ukrainian scientific and methodical workshop on the Computer modeling in education, Kryvyi Rih, 6 April 2012.
72. Young, G.: On reinforcement and interference between stimuli. Bulletin of Mathematical Biophysics. 3 (1), 5–12 (1941). doi: 10.1007/BF02478102
73. Zaremba T.: CHAPTER 12 — Case Study III: Technology in Search of a Buck. In: Eberhart, R. C., Dobbins, R. W. (eds.) Neural Network PC Tools: A Practical Guide, pp. 251–283. Academic Press, San Diego (1990).

Найчастіше читають статті цього автора (авторів)

Особливість: цей модуль вимагає, що б був включений хоча б один модуль статистики / звітів. Якщо ваші модулі статистики повертають більше однієї метрики, то будь ласка обраний вами головну метрику на сторінці налаштувань сайту адміністратором і / або на сторінках налаштування керуючого журналом.