ANALYSIS OF MUTAGENESIS IN APICAL MERISTEMS OF ROOTS Zea mays L. (POACEAE) INDUCED BY COMBINED ACTION THE IONS OF CADMIUM, NICKEL AND ZINC
DOI:
https://doi.org/10.31812/eco-bulletin-krd.v6i0.4563Keywords:
cadmium, zinc, nickel, Zea mays, mitosis, chromosomal aberrations, cytogenetic disordersAbstract
The paper presents the results of the carried out cytological analysis
of apical meristems of the corn roots of the Blitz 160 MB hybrid in the
presence of zinc, nickel and cadmium ions in the growing medium. It was
found that the combined action of heavy metal ions, first of all, caused a
general decrease in the mitotic index and an increase in the proportion of
cells at the prophase and metaphase stages in the meristematic cells of Z.
mays seedlings. In contrast, the percentage of anaphase cells decreased by
15–20%, and the percentage of telophase cells decreased by 1.2–1.5 times
relative to the control conditions, respectively. In the spectrum of cytogenetic
disorders caused by the action of heavy metals in the roots of the Blitz
160 MB corn hybrid, anomalies caused by damage to chromosomes (single
and multiple bridges, agglutination of chromosomes) and anomalies caused
by damage to the mitotic apparatus (lagging and advancing chromosomes,
disoriented chromosomes, fragments chromosomes and multipolar mitoses).
Compared to the control, the presence of cadmium, zinc and nickel ions in the
growing medium at both minimum and maximum concentrations had a high
cytotoxic effect and induced an increase in the number of aberrant cells in the
meristems of corn roots by more than 5 times. In general, among chromosomal
aberrations, the most common were lagging chromosomes (more than 75% of
the total number of mitotic pathologies), single bridges (8.8%), premature
chromosome movement (2.5%) and multipolarity (2.0%). In addition, the
combined action of metal ions induced the formation of abnormalities such
as agglutination, disoriented chromosomes, and the formation of chromosome
fragments. The general decrease in the mitotic index and a wide range of
chromosomal aberrations established by us indicate that heavy metals, when
they act together, are clastogenic and affect chromosomes at the DNA level.
And the high cytogenetic activity of cadmium, zinc and nickel ions shown by us
confirms the genetic danger of industrial emissions with the content of heavy
metal ions for organisms in ecosystems and provides for the need to develop
a national program for large-scale genetic monitoring of technogenic pollution
of Ukrainian territories.
Downloads
Metrics
References
2. Aslam, R., Bhat, T. M., Choudhary, S., & Ansari, M. Y. K. (2017). An overview on genotoxicity of heavy metal in a spice crop (Capsicum annuum L.) in respect to cyto-morphological behavior. Caryologia: International Journal of Cytology, Cytosystematics and Cytogenetics, 70, 42–47. https://doi.org/10.1080/00087114.2016.1258884
3. Bannon, D. I., Drexler, J.W., & Fent, G. M., et al. (2009). Evaluation of small arms range soils for metal contamination and lead bioavailability. Environ. Sci. Technol., 43, 9071–9076. https://doi.org/10.1021/es901834h
4. Belousov, M. V., & Mashkina, O. S. (2015).Vliyaniye nikelya i kadmiya na tsitogeneticheskiye pokazateli Pinus sylvestris L. [Cytogenetic response of scots pine (Pinus sylvestris L.) to cadmium and nickel]. Cytology, 57 (6), 459–464. (in Russian).
5. Belykh, E. S., & Maystrenko, T. A. (2015). Tsitologicheskiye effekty u rasteniy Allium schoenopranum proizrastayushchikh na tekhnogenno zagryaznennoy pochve [Cytological effects in Allium schoenopranum plants growing on technogenically contaminated soil]. Radiation biology. Radioecology, 55 (1), 5–15. (in Russian).
6. Bohuslavska, L. V., Shupranova, L. V., & Vinnychenko, O. M. (2009). Tsytohenetychna aktyvnist merystematychnykh klityn koreniv roslyn kukurudzy za rozdilnoyi ta sumisnoyi diyi ioniv vazhkykh metaliv [The cytogenetic activity of meristeme of root cells of plants mays for separately and combination of influence ions heavy metals]. Bulletin of the Ukrainian Society of Geneticists and Breeders, 7 (1), 10–16. (in Ukrainian).
7. Chakravarty, B., & Srivastava, S. (1992). Toxicity of some heavy metals in vivo and in vitro in Helianthus annuus. Mutat. Res., 283, 287–294. https://doi.org/10.1016/0165-7992(92)90061-L
8. Compton, D. A. (2011). Mechanisms of Aneuploidy. Current Opinion in Cell Biology, 23 (1), 109–113. https://doi.org/10.1016/j.ceb.2010.08.007
9. Dovhalyuk, A. (2013). Zabrudnennya dovkillya toksychnymy metalamy ta yoho indykatsiya za dopomohoyu roslynnykh testovykh system [Environmental contamination by toxic metals and its indication by plant test systems]. Studia Biologica, 7 (1), 197–204. (in Ukrainian).
10. Fuchs, L. K., Jenkins, G., & Phillips, D.W. (2018). Anthropogenic Impacts on Meiosis in Plants. Front. Plant Sci., 9, 1429. https://doi.org/10.3389/fpls.2018.01429
11. Gichner, T., Patkova, Z., Szakova, J., & Demnerova, K. (2006). Toxicity and DNA damage in tobacco and potato plants growing on soil polluted with heavy metals. Ecotoxicol. Environ. Saf., 65, 420–426. https://doi.org/10.1016/j.ecoenv.2005.08.006
12. Hautier, Y., Tilman, D., & Isbell, F., et al. (2015). Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science, 348, 336–340. https://doi.org/10.1126/science.aaa1788
13. Khan, S., Anas, M., & Malik, A. (2019). Mutagenicity and genotoxicity evaluation of textile industry wastewater using bacterial and plant bioassays. Toxicology Reports, 6, 193–201. https://doi.org/10.1016/j.toxrep.2019.02.002
14. Kulaeva, O. A., Gribchenko, E. S., & Zorin, E. A., et al. (2018). Sravnitel’nyy analiz ekspressii genov, svyazannykh so stressom, u dvukh liniy gorokha, kontrastnykh po priznaku ustoychivosti k kadmiyu [Comparative analysis of the expression of stress-related genes in two pea genotypes contrasting in tolerance to cadmium]. Ecological genetics, 16 (4), 75–84. https://doi.org/10.17816/ecogen16475-84 (in Russian).
15. Kumar, G., & Rai, P. (2007). Comparative Genotoxic Potential of Mercury and Cadmium in Soybean. Turk. J. Biol., 31, 13–18.
16. Kumar, G., & Srivastava, A. (2015). Clastogenic and mito-inhibitory effect of heavy metals in root meristems of Vicia faba. Chromosome Botany, 10 (1), 23–29. https://doi.org/10.3199/iscb.10.23
17. Mittal, N., & Srivastava, A. K. (2014). Cadmium and chromium induced aberrations in the reproductive biology of Hordeum vulgare. Cytologia, 79, 207–214. https://doi.org/10.1508/cytologia.79.207
18. Olorunfemia, D., Durub, E., & Okieimen, F. (2012). Induction of chromosome aberrations in Allium cepa L. root tips on exposure to ballast water. Caryologia: International Journal of Cytology, Cytosystematics and Cytogenetics, 65 (2), 147–151. https://doi.org/10.1080/00087114.2012.711676
19. Pausheva, Z. P. (1980). Praktikum po fiziologii rasteniy [Workshop on plant physiology]. “Kolos”, Moskow, 255. (in Russian).
20. Pavlyukova, N., & Bohuslavska, L. (2015). Proliferatyvna aktyvnist tvirnykh tkanyn koreniv kukurudzy za diyi herbitsydu ta hipertermiyi [Proliferative activity of maize roots meristems under the action of herbicides and hyperthermia]. Visnyk of the Lviv University. Series Biology, 70, 266–270. (in Ukrainian)
21. Ritambhara, T., & Kumar, G. (2010). Genetic loss through heavy metal induced chromosomal stickiness in Grass pea. Caryologia, 63 (3), 223–228.
22. Siddiqui, S. (2015). DNA damage in Cicer plant grown on soil polluted with heavy metals. Journal of King Saud University. Science, 27, 217–223. https://doi.org/10.1016/j.jksus.2015.02.004
23. Shen, Y., Zhang, Y., & Chen, J., et al. (2013). Genome expression profile analysis reveals important transcripts in maize roots responding to the stress of heavy metal Pb. Physiol. Plant, 147, 270–282. https://doi.org/10.1111/j.1399-3054.2012.01670.x
24. Siddiqui, S., Meghvansi, M. K., Wani, M. A., & Jabee, F. (2009). Evaluating cadmium toxicity to the root meristem of Pisum sativum L. Acta Physiol. Plant, 31, 531–536.
25. Srivastava, V., Sarkar, A., & Singh, S., et al. (2017). Agroecological Responses of Heavy Metal Pollution with Special Emphasis on Soil Health and Plant Performances. Front. Environ. Sci., 5 (64), 19. https://doi.org/10.3389/fenvs.2017.00064
26. Xian, Y., Wang, M., & Chen, W. (2015). Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties. Chemosphere, 139, 604–608. https://doi.org/10.1016/j.chemosphere.2014.12.060
27. Yakymchuk, R. A. (2015). Tsytohenetychna otsinka mutahennoho vplyvu na korenevu merystemu Triticum aestivum zabrudnen terytoriy, prylehlykh do teplovykh elektrostantsiy [Cytogenetic evaluation of mutagenic effects on a root meristem of Triticum aestivum contamination of the territories adjacent to steam power plants]. Bulletin of Kharkiv National Agrarian University. Biology series, 1 (34), 62–70. (in Ukrainian).
28. Yakymchuk, R. A. (2018). Cytogenetic disorders in Triticum aestivum L. cells, induced by heavy metal releases from industrial production. Ukrainian Journal of Ecology, 8 (1), 317–323. https://doi.org/10.15421/2018_217
29. Yildiz, M., Cigerci, I. H., & Konuk, M., et al. (2009). Determination of genotoxic effects of copper sulphate and cobalt chloride in Allium cepa root cells bychromosome aberration and comet asseys. Chemosphere, 75 (7), 934–938.
30. Zhang, Y., & Yang, X. (1994). The toxic effects of cadmium on cell division and chromosomal morphology of Hordeum vulgare. Mutation Research. Environmental Mutagenesis and Related Subjects, 312 (2), 121–126. https://doi.org/10.1016/0165-1161(94)90016-7